Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure
Hugh G Gauch,
Sheng Qian,
Hans-Peter Piepho,
Linda Zhou and
Rui Chen
PLOS ONE, 2019, vol. 14, issue 6, 1-26
Abstract:
SNP datasets are high-dimensional, often with thousands to millions of SNPs and hundreds to thousands of samples or individuals. Accordingly, PCA graphs are frequently used to provide a low-dimensional visualization in order to display and discover patterns in SNP data from humans, animals, plants, and microbes—especially to elucidate population structure. PCA is not a single method that is always done the same way, but rather requires three choices which we explore as a three-way factorial: two kinds of PCA graphs by three SNP codings by six PCA variants. Our main three recommendations are simple and easily implemented: Use PCA biplots, SNP coding 1 for the rare allele and 0 for the common allele, and double-centered PCA (or AMMI1 if main effects are also of interest). We also document contemporary practices by a literature survey of 125 representative articles that apply PCA to SNP data, find that virtually none implement our recommendations. The ultimate benefit from informed and optimal choices of PCA graph, SNP coding, and PCA variant, is expected to be discovery of more biology, and thereby acceleration of medical, agricultural, and other vital applications.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218306 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18306&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0218306
DOI: 10.1371/journal.pone.0218306
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().