EconPapers    
Economics at your fingertips  
 

A prediction model on rockburst intensity grade based on variable weight and matter-element extension

Jianhong Chen, Yi Chen, Shan Yang, Xudong Zhong and Xu Han

PLOS ONE, 2019, vol. 14, issue 6, 1-17

Abstract: Rockburst is a common dynamic disaster in deep underground engineering. To accurately predict rockburst intensity grade, this study proposes a novel rockburst prediction model based on variable weight and matter-element extension theory. In the proposed model, variable weight theory is used to optimize the weights of prediction indexes. Matter-element extension theory and grade variable method are used to calculate the grade variable interval corresponding to the classification standard of rockburst intensity grade. The rockburst intensity grade of Engineering Rock Mass is predicted by rock burst intensity level variable and the interval. Finally, the model is tested by predicting the rockburst intensity grades of worldwide several projects. The prediction results are compared with the actual rockburst intensity grades and the prediction results of other models. The results indicate that, after using variable weight theory and grade variable method, the correct rate of prediction results of matter-element extension model is improved, and the safety of the prediction results is also enhanced. This study provides a new way to predict rock burst in underground engineering.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218525 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18525&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0218525

DOI: 10.1371/journal.pone.0218525

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0218525