EconPapers    
Economics at your fingertips  
 

Optimizing irrigation and nitrogen fertilization for seed yield in western wheatgrass [Pascopyrum smithii (Rydb.) Á. Löve] using a large multi-factorial field design

Zhao Chen, Xv Liu, Junpeng Niu, Wennan Zhou, Tian Zhao, Wenbo Jiang, Jian Cui, Robert Kallenbach and Quanzhen Wang

PLOS ONE, 2019, vol. 14, issue 6, 1-21

Abstract: It is crucial for agricultural production to identify the trigger that switches plants from vegetative to reproductive growth. Agricultural sustainability in semiarid regions is challenged by nitrogen (N) fertilizer overuse, inadequate soil water, and heavy carbon emissions. Previous studies focused on the short-term effects of a single application of N and water but have not investigated the long-term effects of different irrigation and N fertilizer regimens on crop yields and yield components. N application is routinely coupled with water availability, and crop yields can be maximized by optimizing both. We examined the growth of western wheatgrass [Pascopyrum smithii (Rydb.) Á. Löve], a temperate-region forage and turf grass, using multiple different combinations of N fertilizer [(NH4)2·CO3] and irrigation levels over 3 years to determine optimal field management. We conducted multifactorial, orthogonally designed field experiments with large sample sizes, and measured fertile tillers m-2 (Y1), spikelets/fertile tillers (Y2), florets/spikelet (Y3), seed numbers/spikelet (Y4), seed weight (Y5), and seed yield (Z) to study factors associated with the switch between vegetative and reproductive growth. Fertilization had a greater effect on seed yield and yield components than irrigation. Y1 had the strongest positive effect on Z, whereas Y5 had a negative effect on Z. Irrigation and fertilization affected Z, Y1, and Y5. Fertilizer concentrations were positively correlated with Z, Y1, and Y5, whereas irrigation levels were negatively correlated. The ridge regression linear model results suggested N application rate and irrigation had antagonistic effects on Y1 (X3 = 867.6–4.23×X2; R2 = 0.988, F = Infinity, P

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218599 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18599&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0218599

DOI: 10.1371/journal.pone.0218599

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0218599