EconPapers    
Economics at your fingertips  
 

Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption

Matteo Fontana (matteo.fontana@polimi.it), Massimo Tavoni and Simone Vantini

PLOS ONE, 2019, vol. 14, issue 6, 1-16

Abstract: Smart energy meters generate real time, high frequency data which can foster demand management and response of consumers and firms, with potential private and social benefits. However, proper statistical techniques are needed to make sense of this large amount of data and translate them into usable recommendations. Here, we apply Functional Data Analysis (FDA), a novel branch of Statistics that analyses functions—to identify drivers of residential electricity load curves. We evaluate a real time feedback intervention which involved about 1000 Italian households for a period of three years. Results of the FDA modelling reveal, for the first time, daytime-indexed patterns of residential electricity consumption which depend on the ownership of specific clusters of electrical appliances and an overall reduction of consumption after the introduction of real time feedback, unrelated to appliance ownership characteristics.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218702 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18702&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0218702

DOI: 10.1371/journal.pone.0218702

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0218702