EconPapers    
Economics at your fingertips  
 

Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death

Saqib E Awan, Mohammed Bennamoun, Ferdous Sohel, Frank M Sanfilippo, Benjamin J Chow and Girish Dwivedi

PLOS ONE, 2019, vol. 14, issue 6, 1-13

Abstract: Background: The prediction of readmission or death after a hospital discharge for heart failure (HF) remains a major challenge. Modern healthcare systems, electronic health records, and machine learning (ML) techniques allow us to mine data to select the most significant variables (allowing for reduction in the number of variables) without compromising the performance of models used for prediction of readmission and death. Moreover, ML methods based on transformation of variables may potentially further improve the performance. Objective: To use ML techniques to determine the most relevant and also transform variables for the prediction of 30-day readmission or death in HF patients. Methods: We identified all Western Australian patients aged 65 years and above admitted for HF between 2003–2008 in linked administrative data. We evaluated variables associated with HF readmission or death using standard statistical and ML based selection techniques. We also tested the new variables produced by transformation of the original variables. We developed multi-layer perceptron prediction models and compared their predictive performance using metrics such as Area Under the receiver operating characteristic Curve (AUC), sensitivity and specificity. Results: Following hospital discharge, the proportion of 30-day readmissions or death was 23.7% in our cohort of 10,757 HF patients. The prediction model developed by us using a smaller set of variables (n = 8) had comparable performance (AUC 0.62) to the traditional model (n = 47, AUC 0.62). Transformation of the original 47 variables further improved (p

Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218760 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18760&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0218760

DOI: 10.1371/journal.pone.0218760

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0218760