Mapping flow velocity in the human retinal capillary network with pixel intensity cross correlation
Phillip Bedggood and
Andrew Metha
PLOS ONE, 2019, vol. 14, issue 6, 1-22
Abstract:
We present a new method for determining cellular velocity in the smallest retinal vascular networks as visualized with adaptive optics. The method operates by comparing the intensity profile of each movie pixel with that of every other pixel, after shifting in time by one frame. The time-shifted pixel which most resembles the reference pixel is deemed to be a ‘source’ or ‘destination’ of flow information for that pixel. Velocity in the transverse direction is then calculated by dividing the spatial displacement between the two pixels by the inter-frame period. We call this method pixel intensity cross-correlation, or “PIX”. Here we compare measurements derived from PIX to two other state-of-the-art algorithms (particle image velocimetry and the spatiotemporal kymograph), as well as to manually tracked cell data. The examples chosen highlight the potential of the new algorithm to substantially improve spatial and temporal resolution, resilience to noise and aliasing, and assessment of network flow properties compared with existing methods.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218918 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18918&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0218918
DOI: 10.1371/journal.pone.0218918
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().