Artificial intelligence algorithm for predicting mortality of patients with acute heart failure
Joon-myoung Kwon,
Kyung-Hee Kim,
Ki-Hyun Jeon,
Sang Eun Lee,
Hae-Young Lee,
Hyun-Jai Cho,
Jin Oh Choi,
Eun-Seok Jeon,
Min-Seok Kim,
Jae-Joong Kim,
Kyung-Kuk Hwang,
Shung Chull Chae,
Sang Hong Baek,
Seok-Min Kang,
Dong-Ju Choi,
Byung-Su Yoo,
Kye Hun Kim,
Hyun-Young Park,
Myeong-Chan Cho and
Byung-Hee Oh
PLOS ONE, 2019, vol. 14, issue 7, 1-14
Abstract:
Aims: This study aimed to develop and validate deep-learning-based artificial intelligence algorithm for predicting mortality of AHF (DAHF). Methods and results: 12,654 dataset from 2165 patients with AHF in two hospitals were used as train data for DAHF development, and 4759 dataset from 4759 patients with AHF in 10 hospitals enrolled to the Korean AHF registry were used as performance test data. The endpoints were in-hospital, 12-month, and 36-month mortality. We compared the DAHF performance with the Get with the Guidelines–Heart Failure (GWTG-HF) score, Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score, and other machine-learning models by using the test data. Area under the receiver operating characteristic curve of the DAHF were 0.880 (95% confidence interval, 0.876–0.884) for predicting in-hospital mortality; these results significantly outperformed those of the GWTG-HF (0.728 [0.720–0.737]) and other machine-learning models. For predicting 12- and 36-month endpoints, DAHF (0.782 and 0.813) significantly outperformed MAGGIC score (0.718 and 0.729). During the 36-month follow-up, the high-risk group, defined by the DAHF, had a significantly higher mortality rate than the low-risk group(p
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219302 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 19302&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0219302
DOI: 10.1371/journal.pone.0219302
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().