Case selection and causal inferences in qualitative comparative research
Thomas Plümper,
Vera E Troeger and
Eric Neumayer
PLOS ONE, 2019, vol. 14, issue 7, 1-18
Abstract:
Traditionally, social scientists perceived causality as regularity. As a consequence, qualitative comparative case study research was regarded as unsuitable for drawing causal inferences since a few cases cannot establish regularity. The dominant perception of causality has changed, however. Nowadays, social scientists define and identify causality through the counterfactual effect of a treatment. This brings causal inference in qualitative comparative research back on the agenda since comparative case studies can identify counterfactual treatment effects. We argue that the validity of causal inferences from the comparative study of cases depends on the employed case-selection algorithm. We employ Monte Carlo techniques to demonstrate that different case-selection rules strongly differ in their ex ante reliability for making valid causal inferences and identify the most and the least reliable case selection rules.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219727 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 19727&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0219727
DOI: 10.1371/journal.pone.0219727
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().