EconPapers    
Economics at your fingertips  
 

EdgeScaping: Mapping the spatial distribution of pairwise gene expression intensities

Benafsh Husain and F Alex Feltus

PLOS ONE, 2019, vol. 14, issue 8, 1-15

Abstract: Gene co-expression networks (GCNs) are constructed from Gene Expression Matrices (GEMs) in a bottom up approach where all gene pairs are tested for correlation within the context of the input sample set. This approach is computationally intensive for many current GEMs and may not be scalable to millions of samples. Further, traditional GCNs do not detect non-linear relationships missed by correlation tests and do not place genetic relationships in a gene expression intensity context. In this report, we propose EdgeScaping, which constructs and analyzes the pairwise gene intensity network in a holistic, top down approach where no edges are filtered. EdgeScaping uses a novel technique to convert traditional pairwise gene expression data to an image based format. This conversion not only performs feature compression, making our algorithm highly scalable, but it also allows for exploring non-linear relationships between genes by leveraging deep learning image analysis algorithms. Using the learned embedded feature space we implement a fast, efficient algorithm to cluster the entire space of gene expression relationships while retaining gene expression intensity. Since EdgeScaping does not eliminate conventionally noisy edges, it extends the identification of co-expression relationships beyond classically correlated edges to facilitate the discovery of novel or unusual expression patterns within the network. We applied EdgeScaping to a human tumor GEM to identify sets of genes that exhibit conventional and non-conventional interdependent non-linear behavior associated with brain specific tumor sub-types that would be eliminated in conventional bottom-up construction of GCNs. Edgescaping source code is available at https://github.com/bhusain/EdgeScaping under the MIT license.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220279 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20279&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0220279

DOI: 10.1371/journal.pone.0220279

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0220279