Measuring network rewiring over time
Yicheol Han and
Stephan J Goetz
PLOS ONE, 2019, vol. 14, issue 7, 1-13
Abstract:
Recent years have seen tremendous advances in the scientific study of networks, as more and larger data sets of relationships among nodes have become available in many different fields. This has led to pathbreaking discoveries of near-universal network behavior over time, including the principle of preferential attachment and the emergence of scaling in complex networks. Missing from the set of network analysis methods to date is a measure that describes for each node how its relationship (or links) with other nodes changes from one period to the next. Conventional measures of network change for the most part show how the degrees of a node change; these are scalar comparisons. Our contribution is to use, for the first time, the cosine similarity to capture not just the change in degrees of a node but its relationship to other nodes. These are vector (or matrix)-based comparisons, rather than scalar, and we refer to them as “rewiring” coefficients. We apply this measure to three different networks over time to show the differences in the two types of measures. In general, bigger increases in our rewiring measure are associated with larger increases in network density, but this is not always the case.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220295 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20295&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0220295
DOI: 10.1371/journal.pone.0220295
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().