Downscaling livestock census data using multivariate predictive models: Sensitivity to modifiable areal unit problem
Daniele Da Re,
Marius Gilbert,
Celia Chaiban,
Pierre Bourguignon,
Weerapong Thanapongtharm,
Timothy P Robinson and
Sophie O Vanwambeke
PLOS ONE, 2020, vol. 15, issue 1, 1-17
Abstract:
The analysis of census data aggregated by administrative units introduces a statistical bias known as the modifiable areal unit problem (MAUP). Previous researches have mostly assessed the effect of MAUP on upscaling models. The present study contributes to clarify the effects of MAUP on the downscaling methodologies, highlighting how a priori choices of scales and shapes could influence the results. We aggregated chicken and duck fine-resolution census in Thailand, using three administrative census levels in regular and irregular shapes. We then disaggregated the data within the Gridded Livestock of the World analytical framework, sampling predictors in two different ways. A sensitivity analysis on Pearson’s r correlation statistics and RMSE was carried out to understand how size and shapes of the response variables affect the goodness-of-fit and downscaling performances. We showed that scale, rather than shapes and sampling methods, affected downscaling precision, suggesting that training the model using the finest administrative level available is preferable. Moreover, datasets showing non-homogeneous distribution but instead spatial clustering seemed less affected by MAUP, yielding higher Pearson’s r values and lower RMSE compared to a more spatially homogenous dataset. Implementing aggregation sensitivity analysis in spatial studies could help to interpret complex results and disseminate robust products.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221070 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21070&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0221070
DOI: 10.1371/journal.pone.0221070
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().