An improved gray prediction model for China’s beef consumption forecasting
Bo Zeng,
Shuliang Li,
Wei Meng and
Dehai Zhang
PLOS ONE, 2019, vol. 14, issue 9, 1-18
Abstract:
To balance the supply and demand in China's beef market, beef consumption must be scientifically and effectively forecasted. Beef consumption is affected by many factors and is characterized by gray uncertainty. Therefore, gray theory can be used to forecast the beef consumption, In this paper, the structural defects and unreasonable parameter design of the traditional gray model are analyzed. Then, a new gray model termed, EGM(1,1,r), is built, and the modeling conditions and error checking methods of EGM(1,1,r) are studied. Then, EGM(1,1,r) is used to simulate and forecast China’s beef consumption. The results show that both the simulation and prediction precisions of the new model are better than those of other gray models. Finally, the new model is used to forecast China’s beef consumption for the period from 2019–2025. The findings will serve as an important reference for the Chinese government in formulating policies to ensure the balance between the supply and demand for Chinese beef.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221333 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21333&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0221333
DOI: 10.1371/journal.pone.0221333
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().