EconPapers    
Economics at your fingertips  
 

Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms

Daniel Gómez-Hernández, David García-Gudiño, Emmanuel Landa, Irving O Morales and Alejandro Frank

PLOS ONE, 2019, vol. 14, issue 9, 1-17

Abstract: Recently it has been shown that building networks from time series allows to study complex systems to characterize them when they go through a phase transition. This give us the opportunity to study this systems from a entire new point of view. In the present work we have used the natural and horizontal visualization algorithms to built networks of two popular models, which present phase transitions: the Ising model and the Kuramoto model. By measuring some topological quantities as the average degree, or the clustering coefficient, it was found that the networks retain the capability of detecting the phase transition of the system. From our results it is possible to establish that both visibility algorithms are capable of detecting the critical control parameter, as in every quantity analyzed (the average degree, the average path and the clustering coefficient) there is a minimum or a maximum value. In the case of the natural visualization algorithm, the average path results are much more noisy than in the other quantities in the study. Specially for the Kuramoto Model, which in this case does not allow a detection of the critical point at plain sight as for the other quantities. The horizontal visualization algorithm has proven to be more explicit in every quantity, as every one of them show a clear change of behavior before and after the critical point of the transition.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221674 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21674&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0221674

DOI: 10.1371/journal.pone.0221674

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0221674