A Bayesian framework for the detection of diffusive heterogeneity
Julie A Cass,
C David Williams and
Julie Theriot
PLOS ONE, 2020, vol. 15, issue 5, 1-16
Abstract:
Cells are crowded and spatially heterogeneous, complicating the transport of organelles, proteins and other substrates. One aspect of this complex physical environment, the mobility of passively transported substrates, can be quantitatively characterized by the diffusion coefficient: a descriptor of how rapidly substrates will diffuse in the cell, dependent on their size and effective local viscosity. The spatial dependence of diffusivity is challenging to quantitatively characterize, because temporally and spatially finite observations offer limited information about a spatially varying stochastic process. We present a Bayesian framework that estimates diffusion coefficients from single particle trajectories, and predicts our ability to distinguish differences in diffusion coefficient estimates, conditional on how much they differ and the amount of data collected. This framework is packaged into a public software repository, including a tutorial Jupyter notebook demonstrating implementation of our method for diffusivity estimation, analysis of sources of uncertainty estimation, and visualization of all results. This estimation and uncertainty analysis allows our framework to be used as a guide in experimental design of diffusivity assays.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221841 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21841&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0221841
DOI: 10.1371/journal.pone.0221841
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().