EconPapers    
Economics at your fingertips  
 

Koopman Mode Analysis of agent-based models of logistics processes

James Hogg, Maria Fonoberova, Igor Mezić and Ryan Mohr

PLOS ONE, 2019, vol. 14, issue 9, 1-37

Abstract: Modern logistics processes and systems can feature extremely complicated dynamics. Agent Based Modeling is emerging as a powerful modeling tool for design, analysis and control of such logistics systems. However, the complexity of the model itself can be overwhelming and mathematical meta-modeling tools are needed that aggregate information and enable fast and accurate decision making and control system design. Here we present Koopman Mode Analysis (KMA) as such a tool. KMA uncovers exponentially growing, decaying or oscillating collective patterns in dynamical data. We apply the methodology to two problems, both of which exhibit a bifurcation in dynamical behavior, but feature very different dynamics: Medical Treatment Facility (MTF) logistics and ship fueling (SF) logistics. The MTF problem features a transition between efficient operation at low casualty rates and inefficient operation beyond a critical casualty rate, while the SF problem features a transition between short mission life at low initial fuel levels and sustained mission beyond a critical initial fuel level. Both bifurcations are detected by analyzing the spectrum of the associated Koopman operator. Mathematical analysis is provided justifying the use of the Dynamic Mode Decomposition algorithm in punctuated linear decay dynamics that is featured in the SF problem.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222023 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22023&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0222023

DOI: 10.1371/journal.pone.0222023

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0222023