Structure, mechanics and material properties of claw cuticle from mole cricket Gryllotalpaorientalis
Zhifeng Zhang,
Yan Zhang,
Junxia Zhang and
Yueying Zhu
PLOS ONE, 2019, vol. 14, issue 9, 1-15
Abstract:
Powerful shovel-like forelimbs with special shape, structure and biological materials enable mole cricket to digging efficiently. During digging, the tip of the claw needs to wedge into the soil, and the base needs to withstand considerable anti-shear force. In this study, we analysed the structural characteristics, material composition and mechanical properties of the claw teeth using scanning electron microscopy, plasma atomic emission spectroscopy, nanoindentation and finite element analysis. The results show that the tips of claw teeth have a dense and homogeneous structure and a higher hardness and contents of Mn and Zn compared with the base. The structure of the base of claw teeth has an obvious laminar structure and higher fracture resistance. Moreover, it is speculated from the simulation results that basal position of the claw teeth is tough enough to withstand high stress, and the presence of the ribs effectively improves the mechanical stability and load-bearing capacity of the teeth during excavation. The results of this study can provide inspiration for the design of efficient mechanical components and agricultural implements.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222116 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22116&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0222116
DOI: 10.1371/journal.pone.0222116
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().