Multi-agent reinforcement learning with approximate model learning for competitive games
Young Joon Park,
Yoon Sang Cho and
Seoung Bum Kim
PLOS ONE, 2019, vol. 14, issue 9, 1-20
Abstract:
We propose a method for learning multi-agent policies to compete against multiple opponents. The method consists of recurrent neural network-based actor-critic networks and deterministic policy gradients that promote cooperation between agents by communication. The learning process does not require access to opponents’ parameters or observations because the agents are trained separately from the opponents. The actor networks enable the agents to communicate using forward and backward paths while the critic network helps to train the actors by delivering them gradient signals based on their contribution to the global reward. Moreover, to address nonstationarity due to the evolving of other agents, we propose approximate model learning using auxiliary prediction networks for modeling the state transitions, reward function, and opponent behavior. In the test phase, we use competitive multi-agent environments to demonstrate by comparison the usefulness and superiority of the proposed method in terms of learning efficiency and goal achievements. The comparison results show that the proposed method outperforms the alternatives.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222215 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22215&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0222215
DOI: 10.1371/journal.pone.0222215
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().