EconPapers    
Economics at your fingertips  
 

eQTL mapping of rare variant associations using RNA-seq data: An evaluation of approaches

Sharon Marie Lutz, Annie Thwing and Tasha Fingerlin

PLOS ONE, 2019, vol. 14, issue 10, 1-9

Abstract: Expression quantitative trait loci (eQTL) provide insight on transcription regulation and illuminate the molecular basis of phenotypic outcomes. High-throughput RNA sequencing (RNA-seq) is becoming a popular technique to measure gene expression abundance. Traditional eQTL mapping methods for microarray expression data often assume the expression data follow a normal distribution. As a result, for RNA-seq data, total read count measurements can be normalized by normal quantile transformation in order to fit the data using a linear regression. Other approaches model the total read counts using a negative binomial regression. While these methods work well for common variants (minor allele frequencies > 5% or 1%), an extension of existing methodology is needed to accommodate a collection of rare variants in RNA-seq data. Here, we examine 2 approaches that are direct applications of existing methodology and apply these approaches to RNAseq studies: 1) collapsing the rare variants in the region and using either negative binomial regression or Poisson regression and 2) using the normalized read counts with the Sequence Kernel Association Test (SKAT), the burden test for SKAT (SKAT-Burden), or an optimal combination of these two tests (SKAT-O). We evaluated these approaches via simulation studies under numerous scenarios and applied these approaches to the 1,000 Genomes Project.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223273 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23273&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0223273

DOI: 10.1371/journal.pone.0223273

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0223273