Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)
Amber Shaikh,
M Asif Jamal,
Fozia Hanif,
M Sadiq Ali Khan and
Syed Inayatullah
PLOS ONE, 2019, vol. 14, issue 10, 1-22
Abstract:
To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223476 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23476&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0223476
DOI: 10.1371/journal.pone.0223476
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().