Highly accurate prediction of flammability limits of chemical compounds using novel integrated hybrid models
Mohanad El-Harbawi,
Brahim Belhaouari Samir,
Lahssen El Blidi and
Ouahid Ben Ghanem
PLOS ONE, 2019, vol. 14, issue 11, 1-16
Abstract:
Two novel and highly accurate hybrid models were developed for the prediction of the flammability limits (lower flammability limit (LFL) and upper flammability limit (UFL)) of pure compounds using a quantitative structure–property relationship approach. The two models were developed using a dataset obtained from the DIPPR Project 801 database, which comprises 1057 and 515 literature data for the LFL and UFL, respectively. Multiple linear regression (MLR), logarithmic, and polynomial models were used to develop the models according to an algorithm and code written using the MATLAB software. The results indicated that the proposed models were capable of predicting LFL and UFL values with accuracies that were among the best (i.e. most optimised) reported in the literature (LFL: R2 = 99.72%, with an average absolute relative deviation (AARD) of 0.8%; UFL: R2 = 99.64%, with an AARD of 1.41%). These hybrid models are unique in that they were developed using a modified mathematical technique combined three conventional methods. These models afford good practicability and can be used as cost-effective alternatives to experimental measurements of LFL and UFL values for a wide range of pure compounds.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224807 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24807&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0224807
DOI: 10.1371/journal.pone.0224807
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().