Quantifying the scale effect in geospatial big data using semi-variograms
Lei Chen,
Yong Gao,
Di Zhu,
Yihong Yuan and
Yu Liu
PLOS ONE, 2019, vol. 14, issue 11, 1-18
Abstract:
The scale effect is an important research topic in the field of geography. When aggregating individual-level data into areal units, encountering the scale problem is inevitable. This problem is more substantial when mining collective patterns from big geo-data due to the characteristics of extensive spatial data. Although multi-scale models were constructed to mitigate this issue, most studies still arbitrarily choose a single scale to extract spatial patterns. In this research, we introduce the nugget-sill ratio (NSR) derived from semi-variograms as an indicator to extract the optimal scale. We conducted two simulated experiments to demonstrate the feasibility of this method. Our results showed that the optimal scale is negatively correlated with spatial point density, but positively correlated with the degree of dispersion in a point pattern. We also applied the proposed method to a case study using Weibo check-in data from Beijing, Shanghai, Chengdu, and Wuhan. Our study provides a new perspective to measure the spatial heterogeneity of big geo-data and selects an optimal spatial scale for big data analytics.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225139 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25139&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225139
DOI: 10.1371/journal.pone.0225139
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().