The kinematics of cyclic human movement
Manfred M Vieten and
Christian Weich
PLOS ONE, 2020, vol. 15, issue 3, 1-19
Abstract:
Literature mentions two types of models describing cyclic movement—theory and data driven. Theory driven models include anatomical and physiological aspects. They are principally suitable for answering questions about the reasons for movement characteristics, but they are complicated and substantial simplifications do not allow generally valid results. Data driven models allow answering specific questions, but lack the understanding of the general movement characteristic. With this paper we try a compromise without having to rely on anatomy, neurology and muscle function. We hypothesize a general kinematic description of cyclic human motion is possible without having to specify the movement generating processes, and still get the kinematics right. The model proposed consists of a superposition of six contributions–subject’s attractor, morphing, short time fluctuation, transient effect, control mechanism and sensor noise, while characterizing numbers and random contributions. We test the model with data from treadmill running and stationary biking. Applying the model in a simulation results in good agreement between measured data and simulation values. We find in all our cases the similarity analysis between measurement and simulation is best for the same subjects—δrunsamesub>55% and δbikesamesub>64%. All comparisons between different subjects are 51%>δrundifferentsub and 52%>δbikedifferentsub. This uniquely allows for the identification of each measurement for the associated simulation. However, even different subject comparisons show good agreement between measurement and simulation results of differences δrun = 6.7±4.7% and δbike = 5.1±4.5%.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225157 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25157&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225157
DOI: 10.1371/journal.pone.0225157
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().