Fiber stiffness, pore size and adhesion control migratory phenotype of MDA-MB-231 cells in collagen gels
Florian Geiger,
Daniel Rüdiger,
Stefan Zahler and
Hanna Engelke
PLOS ONE, 2019, vol. 14, issue 11, 1-13
Abstract:
Cancer cell migration is influenced by cellular phenotype and behavior as well as by the mechanical and chemical properties of the environment. Furthermore, many cancer cells show plasticity of their phenotype and adapt it to the properties of the environment. Here, we study the influence of fiber stiffness, confinement, and adhesion properties on cancer cell migration in porous collagen gels. Collagen gels with soft fibers abrogate migration and promote a round, non-invasive phenotype. Stiffer collagen fibers are inherently more adhesive and lead to the existence of an adhesive phenotype and in general confined migration due to adhesion. Addition of TGF-β lowers adhesion, eliminates the adhesive phenotype and increases the amount of highly motile amoeboid phenotypes. Highest migration speeds and longest displacements are achieved in stiff collagen fibers in pores of about cell size by amoeboid phenotypes. This elucidates the influence of the mechanical properties of collagen gels on phenotype and subsequently migration and shows that stiff fibers, cell sized pores, and low adhesion, are optimal conditions for an amoeboid phenotype and efficient migration.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225215 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25215&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225215
DOI: 10.1371/journal.pone.0225215
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().