EconPapers    
Economics at your fingertips  
 

Predicting the performance of TV series through textual and network analysis: The case of Big Bang Theory

Andrea Fronzetti Colladon and Maurizio Naldi

PLOS ONE, 2019, vol. 14, issue 11, 1-20

Abstract: TV series represent a growing sector of the entertainment industry. Being able to predict their performance allows a broadcasting network to better focus the high investment needed for their preparation. In this paper, we consider a well known TV series—The Big Bang Theory—to identify factors leading to its success. The factors considered are mostly related to the script, such as the characteristics of dialogues (e.g., length, language complexity, sentiment), while the performance is measured by the reviews submitted by viewers (namely the number of reviews as a measure of popularity and the viewers’ ratings as a measure of appreciation). Through correlation and regression analysis, two sets of predictors are identified respectively for appreciation and popularity. In particular the episode number, the percentage of male viewers, the language complexity and text length emerge as the best predictors for popularity, while again the percentage of male viewers and the language complexity plus the number of we-words and the concentration of dialogues are the best choice for appreciation.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225306 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25306&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225306

DOI: 10.1371/journal.pone.0225306

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0225306