EconPapers    
Economics at your fingertips  
 

A model-based framework for chronic hepatitis C prevalence estimation

Abdullah Hamadeh, Zeny Feng, Murray Krahn and William W L Wong

PLOS ONE, 2019, vol. 14, issue 11, 1-20

Abstract: Chronic hepatitis C (CHC) continues to be a highly burdensome disease worldwide. The often-asymptomatic nature of early-stage CHC means that the disease often remains undiagnosed, leaving its prevalence highly uncertain. This generates significant uncertainty in the planning of hepatitis C eradication programs to meet WHO targets. The aim of this work is to establish a mathematical framework for the estimation of a geographic locale’s CHC prevalence and the proportion of its CHC population that remains undiagnosed. A Bayesian MCMC approach is taken to infer these populations from the observed occurrence of CHC-related events using a recently published natural history model of the disease. Using the Canadian context as a specific example, this study estimates that in 2013, the CHC prevalence rate in Canada was 0.63% (95% CI: 0.53% - 0.72%), with 27.1% (95% CI: 19.3% - 36.1%) of the infected population undiagnosed.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225366 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25366&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225366

DOI: 10.1371/journal.pone.0225366

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0225366