Assessing recall of personal sun exposure by integrating UV dosimeter and self-reported data with a network flow framework
Nabil Alshurafa,
Jayalakshmi Jain,
Tammy K Stump,
Bonnie Spring and
June K Robinson
PLOS ONE, 2019, vol. 14, issue 12, 1-17
Abstract:
Background: Melanoma survivors often do not engage in adequate sun protection, leading to sunburn and increasing their risk of future melanomas. Melanoma survivors do not accurately recall the extent of sun exposure they have received, thus, they may be unaware of their personal UV exposure, and this lack of awareness may contribute towards failure to change behavior. As a means of determining behavioral accuracy of recall of sun exposure, this study compared subjective self-reports of time outdoors to an objective wearable sensor. Analysis of the meaningful discrepancies between the self-report and sensor measures of time outdoors was made possible by using a network flow algorithm to align sun exposure events recorded by both measures. Aligning the two measures provides the opportunity to more accurately evaluate false positive and false negative self-reports of behavior and understand participant tendencies to over- and under-report behavior. Methods: 39 melanoma survivors wore an ultraviolet light (UV) sensor on their chest while outdoors for 10 consecutive summer days and provided an end-of-day subjective self-report of their behavior while outdoors. A Network Flow Alignment framework was used to align self-report and objective UV sensor data to correct misalignment. The frequency and time of day of under- and over-reporting were identified. Findings: For the 269 days assessed, the proposed framework showed a significant increase in the Jaccard coefficient (i.e. a measure of similarity between self-report and UV sensor data) by 63.64% (p
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225371 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25371&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225371
DOI: 10.1371/journal.pone.0225371
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().