The optimal delivery time and order quantity in an oligopoly market with time-sensitive customers
Haijiao Li,
Weijin Xu and
Kuan Yang
PLOS ONE, 2019, vol. 14, issue 12, 1-34
Abstract:
With the development of e-commerce, delivery time is regarded as a key competitive advantage in an oligopoly market, as shortening the delivery time can stimulate demand for products. Many firms adopt a variety of strategies to shorten delivery time, and holding sufficient inventory is reported as an effective way. This study integrates a market share attraction model based on delivery time competition with the traditional inventory model to determine the optimal delivery time and order quantity. With the use of supermodular game method, we investigate the effect of changes in marketing and operations factors on the equilibrium delivery time and order quantity in non-dominated and dominated oligopolistic markets. The results reveal that the equilibrium delivery time and order quantity exhibit a directional response to changes in marketing and operations factors, and the response differs between the non-dominated oligopoly and the dominated oligopoly. Furthermore, under a cooperative oligopolistic market with asymmetry, it is beneficial for the firms with high competitive strength to adopt the delivery time strategy, but it fails to do so for the firm with the low competitive strength. Lastly, numerical analysis suggests that marketing factors play a more important role in affecting equilibrium measures than operations factors.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225436 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25436&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225436
DOI: 10.1371/journal.pone.0225436
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().