EconPapers    
Economics at your fingertips  
 

Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning

Michael Mayo, Lynne Chepulis and Ryan G Paul

PLOS ONE, 2019, vol. 14, issue 12, 1-19

Abstract: Techniques using machine learning for short term blood glucose level prediction in patients with Type 1 Diabetes are investigated. This problem is significant for the development of effective artificial pancreas technology so accurate alerts (e.g. hypoglycemia alarms) and other forecasts can be generated. It is shown that two factors must be considered when selecting the best machine learning technique for blood glucose level regression: (i) the regression model performance metrics being used to select the model, and (ii) the preprocessing techniques required to account for the imbalanced time spent by patients in different portions of the glycemic range. Using standard benchmark data, it is demonstrated that different regression model/preprocessing technique combinations exhibit different accuracies depending on the glycemic subrange under consideration. Therefore technique selection depends on the type of alert required. Specific findings are that a linear Support Vector Regression-based model, trained with normal as well as polynomial features, is best for blood glucose level forecasting in the normal and hyperglycemic ranges while a Multilayer Perceptron trained on oversampled data is ideal for predictions in the hypoglycemic range.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225613 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25613&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0225613

DOI: 10.1371/journal.pone.0225613

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0225613