EconPapers    
Economics at your fingertips  
 

Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes

Yukito Kaneshige, Fumio Hayashi, Kenichi Morigaki, Yasushi Tanimoto, Hayato Yamashita, Masashi Fujii and Akinori Awazu

PLOS ONE, 2020, vol. 15, issue 2, 1-17

Abstract: The visual photopigment protein rhodopsin (Rh) is a typical G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disk membrane of rod-photoreceptor cells. Rh molecule has a tendency to form dimer, and the dimer tends to form rows, which is suggested to heighten phototransduction efficiency in single-photon regime. In addition, the dimerization confers Rh an affinity for lipid raft, i.e. raftophilicity. However, the mechanism by which Rh-dimer raftophilicity contributes to the organization of the higher order structure remains unknown. In this study, we performed coarse-grained molecular dynamics simulations of a disk membrane model containing unsaturated lipids, saturated lipids with cholesterol, and Rh-dimers. We described the Rh-dimers by two-dimensional particle populations where the palmitoyl moieties of each Rh exhibits raftophilicity. We simulated the structuring of Rh in a disk for two types of Rh-dimer, i.e., the most and second most stable Rh dimers, which exposes the raftophilic regions at the dimerization-interface (H1/H8 dimer) and two edges away from the interface (H4/H5 dimer), respectively. Our simulations revealed that only the H1/H8 dimer could form a row structure. A small number of raftophilic lipids recruited to and intercalated in a narrow space between H1/H8 dimers stabilize the side-by-side interaction between dimers in a row. Our results implicate that the nano-sized lipid raft domains act as a “glue” to organize the long row structures of Rh-dimers.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226123 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26123&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226123

DOI: 10.1371/journal.pone.0226123

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0226123