EconPapers    
Economics at your fingertips  
 

Inferring disease severity in rheumatoid arthritis using predictive modeling in administrative claims databases

Urmila Chandran, Jenna Reps, Paul E Stang and Patrick B Ryan

PLOS ONE, 2019, vol. 14, issue 12, 1-14

Abstract: Background: Confounding by disease severity is an issue in pharmacoepidemiology studies of rheumatoid arthritis (RA), due to channeling of sicker patients to certain therapies. To address the issue of limited clinical data for confounder adjustment, a patient-level prediction model to differentiate between patients prescribed and not prescribed advanced therapies was developed as a surrogate for disease severity, using all available data from a US claims database. Methods: Data from adult RA patients were used to build regularized logistic regression models to predict current and future disease severity using a biologic or tofacitinib prescription claim as a surrogate for moderate-to-severe disease. Model discrimination was assessed using the area under the receiver (AUC) operating characteristic curve, tested and trained in Optum Clinformatics® Extended DataMart (Optum) and additionally validated in three external IBM MarketScan® databases. The model was further validated in the Optum database across a range of patient cohorts. Results: In the Optum database (n = 68,608), the AUC for discriminating RA patients with a prescription claim for a biologic or tofacitinib versus those without in the 90 days following index diagnosis was 0.80. Model AUCs were 0.77 in IBM CCAE (n = 75,579) and IBM MDCD (n = 7,537) and 0.75 in IBM MDCR (n = 36,090). There was little change in the prediction model assessing discrimination 730 days following index diagnosis (prediction model AUC in Optum was 0.79). Conclusions: A prediction model demonstrated good discrimination across multiple claims databases to identify RA patients with a prescription claim for advanced therapies during different time-at-risk periods as proxy for current and future moderate-to-severe disease. This work provides a robust model-derived risk score that can be used as a potential covariate and proxy measure to adjust for confounding by severity in multivariable models in the RA population. An R package to develop the prediction model and risk score are available in an open source platform for researchers.

Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226255 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26255&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226255

DOI: 10.1371/journal.pone.0226255

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0226255