A network-centric approach for estimating trust between open source software developers
Hitesh Sapkota,
Pradeep K Murukannaiah and
Yi Wang
PLOS ONE, 2019, vol. 14, issue 12, 1-30
Abstract:
Trust between developers influences the success of open source software (OSS) projects. Although existing research recognizes the importance of trust, there is a lack of an effective and scalable computational method to measure trust in an OSS community. Consequently, OSS project members must rely on subjective inferences based on fragile and incomplete information for trust-related decision making. We propose an automated approach to assist a developer in identifying the trustworthiness of another developer. Our two-fold approach, first, computes direct trust between developer pairs who have interacted previously by analyzing their interactions via natural language processing. Second, we infer indirect trust between developers who have not interacted previously by constructing a community-wide developer network and propagating trust in the network. A large-scale evaluation of our approach on a GitHub dataset consisting of 24,315 developers shows that contributions from trusted developers are more likely to be accepted to a project compared to contributions from developers who are distrusted or lacking trust from project members. Further, we develop a pull request classifier that exploits trust metrics to effectively predict the likelihood of a pull request being accepted to a project, demonstrating the practical utility of our approach.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226281 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26281&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226281
DOI: 10.1371/journal.pone.0226281
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().