Identifiability and numerical algebraic geometry
Daniel J Bates,
Jonathan D Hauenstein and
Nicolette Meshkat
PLOS ONE, 2019, vol. 14, issue 12, 1-23
Abstract:
A common problem when analyzing models, such as mathematical modeling of a biological process, is to determine if the unknown parameters of the model can be determined from given input-output data. Identifiable models are models such that the unknown parameters can be determined to have a finite number of values given input-output data. The total number of such values over the complex numbers is called the identifiability degree of the model. Unidentifiable models are models such that the unknown parameters can have an infinite number of values given input-output data. For unidentifiable models, a set of identifiable functions of the parameters are sought so that the model can be reparametrized in terms of these functions yielding an identifiable model. In this work, we use numerical algebraic geometry to determine if a model given by polynomial or rational ordinary differential equations is identifiable or unidentifiable. For identifiable models, we present a novel approach to compute the identifiability degree. For unidentifiable models, we present a novel numerical differential algebra technique aimed at computing a set of algebraically independent identifiable functions. Several examples are used to demonstrate the new techniques.
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226299 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26299&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226299
DOI: 10.1371/journal.pone.0226299
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().