EconPapers    
Economics at your fingertips  
 

A human mission to Mars: Predicting the bone mineral density loss of astronauts

Eneko Axpe, Doreen Chan, Metadel F Abegaz, Ann-Sofie Schreurs, Joshua S Alwood, Ruth K Globus and Eric A Appel

PLOS ONE, 2020, vol. 15, issue 1, 1-10

Abstract: A round-trip human mission to Mars is anticipated to last roughly three years. Spaceflight conditions are known to cause loss of bone mineral density (BMD) in astronauts, increasing bone fracture risk. There is an urgent need to understand BMD progression as a function of spaceflight time to minimize associated health implications and ensure mission success. Here we introduce a nonlinear mathematical model of BMD loss for candidate human missions to Mars: (i) Opposition class trajectory (400–600 days), and (ii) Conjunction class trajectory (1000–1200 days). Using femoral neck BMD data (N = 69) from astronauts after 132-day and 228-day spaceflight and the World Health Organization’s fracture risk recommendation, we predicted post-mission risk and associated osteopathology. Our model predicts 62% opposition class astronauts and 100% conjunction class astronauts will develop osteopenia, with 33% being at risk for osteoporosis. This model can help in implementing countermeasure strategies and inform space agencies’ choice of crew candidates.

Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226434 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26434&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226434

DOI: 10.1371/journal.pone.0226434

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0226434