EconPapers    
Economics at your fingertips  
 

Ghost hunting in the nonlinear dynamic machine

Jonathan E Butner, Ascher K Munion, Brian R W Baucom and Alexander Wong

PLOS ONE, 2019, vol. 14, issue 12, 1-21

Abstract: Integrating dynamic systems modeling and machine learning generates an exploratory nonlinear solution for analyzing dynamical systems-based data. Applying dynamical systems theory to the machine learning solution further provides a pathway to interpret the results. Using random forest models as an illustrative example, these models were able to recover the temporal dynamics of time series data simulated using a modified Cusp Catastrophe Monte Carlo. By extracting the points of no change (set points) and the predicted changes surrounding the set points, it is possible to characterize the topology of the system, both for systems governed by global equation forms and complex adaptive systems. RESULTS: The model for the simulation was able to recover the cusp catastrophe (i.e. the qualitative changes in the dynamics of the system) even when applied to data that have a significant amount of error variance. To further illustrate the approach, a real-world accelerometer example was examined, where the model differentiated between movement dynamics patterns by identifying set points related to cyclic motion during walking and attraction during stair climbing. These example findings suggest that integrating machine learning with dynamical systems modeling provides a viable means for classifying distinct temporal patterns, even when there is no governing equation for the nonlinear dynamics. Results of these integrated models yield solutions with both a prediction of where the system is going next and a decomposition of the topological features implied by the temporal dynamics.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226572 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26572&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226572

DOI: 10.1371/journal.pone.0226572

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0226572