EconPapers    
Economics at your fingertips  
 

A novel model for malaria prediction based on ensemble algorithms

Mengyang Wang, Hui Wang, Jiao Wang, Hongwei Liu, Rui Lu, Tongqing Duan, Xiaowen Gong, Siyuan Feng, Yuanyuan Liu, Zhuang Cui, Changping Li and Jun Ma

PLOS ONE, 2019, vol. 14, issue 12, 1-15

Abstract: Background and objective: Most previous studies adopted single traditional time series models to predict incidences of malaria. A single model cannot effectively capture all the properties of the data structure. However, a stacking architecture can solve this problem by combining distinct algorithms and models. This study compares the performance of traditional time series models and deep learning algorithms in malaria case prediction and explores the application value of stacking methods in the field of infectious disease prediction. Methods: The ARIMA, STL+ARIMA, BP-ANN and LSTM network models were separately applied in simulations using malaria data and meteorological data in Yunnan Province from 2011 to 2017. We compared the predictive performance of each model through evaluation measures: RMSE, MASE, MAD. In addition, gradient-boosting regression trees (GBRTs) were used to combine the above four models. We also determined whether stacking structure improved the model prediction performance. Results: The root mean square errors (RMSEs) of the four sub-models were 13.176, 14.543, 9.571 and 7.208; the mean absolute scaled errors (MASEs) were 0.469, 0.472, 0.296 and 0.266 and the mean absolute deviation (MAD) were 6.403, 7.658, 5.871 and 5.691. After using the stacking architecture combined with the above four models, the RMSE, MASE and MAD values of the ensemble model decreased to 6.810, 0.224 and 4.625, respectively. Conclusions: A novel ensemble model based on the robustness of structured prediction and model combination through stacking was developed. The findings suggest that the predictive performance of the final model is superior to that of the other four sub-models, indicating that stacking architecture may have significant implications in infectious disease prediction.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226910 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26910&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226910

DOI: 10.1371/journal.pone.0226910

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0226910