Deep learning based image reconstruction algorithm for limited-angle translational computed tomography
Jiaxi Wang,
Jun Liang,
Jingye Cheng,
Yumeng Guo and
Li Zeng
PLOS ONE, 2020, vol. 15, issue 1, 1-20
Abstract:
As a low-end computed tomography (CT) system, translational CT (TCT) is in urgent demand in developing countries. Under some circumstances, in order to reduce the scan time, decrease the X-ray radiation or scan long objects, furthermore, to avoid the inconsistency of the detector for the large angle scanning, we use the limited-angle TCT scanning mode to scan an object within a limited angular range. However, this scanning mode introduces some additional noise and limited-angle artifacts that seriously degrade the imaging quality and affect the diagnosis accuracy. To reconstruct a high-quality image for the limited-angle TCT scanning mode, we develop a limited-angle TCT image reconstruction algorithm based on a U-net convolutional neural network (CNN). First, we use the SART method to the limited-angle TCT projection data, then we import the image reconstructed by SART method to a well-trained CNN which can suppress the artifacts and preserve the structures to obtain a better reconstructed image. Some simulation experiments are implemented to demonstrate the performance of the developed algorithm for the limited-angle TCT scanning mode. Compared with some state-of-the-art methods, the developed algorithm can effectively suppress the noise and the limited-angle artifacts while preserving the image structures.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226963 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26963&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226963
DOI: 10.1371/journal.pone.0226963
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().