Single-modal and multi-modal false arrhythmia alarm reduction using attention-based convolutional and recurrent neural networks
Sajad Mousavi,
Atiyeh Fotoohinasab and
Fatemeh Afghah
PLOS ONE, 2020, vol. 15, issue 1, 1-15
Abstract:
This study proposes a deep learning model that effectively suppresses the false alarms in the intensive care units (ICUs) without ignoring the true alarms using single- and multi- modal biosignals. Most of the current work in the literature are either rule-based methods, requiring prior knowledge of arrhythmia analysis to build rules, or classical machine learning approaches, depending on hand-engineered features. In this work, we apply convolutional neural networks to automatically extract time-invariant features, an attention mechanism to put more emphasis on the important regions of the segmented input signal(s) that are more likely to contribute to an alarm, and long short-term memory units to capture the temporal information presented in the signal segments. We trained our method efficiently using a two-step training algorithm (i.e., pre-training and fine-tuning the proposed network) on the dataset provided by the PhysioNet computing in cardiology challenge 2015. The evaluation results demonstrate that the proposed method obtains better results compared to other existing algorithms for the false alarm reduction task in ICUs. The proposed method achieves a sensitivity of 93.88% and a specificity of 92.05% for the alarm classification, considering three different signals. In addition, our experiments for 5 separate alarm types leads significant results, where we just consider a single-lead ECG (e.g., a sensitivity of 90.71%, a specificity of 88.30%, an AUC of 89.51 for alarm type of Ventricular Tachycardia arrhythmia).
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226990 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26990&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0226990
DOI: 10.1371/journal.pone.0226990
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().