EconPapers    
Economics at your fingertips  
 

Recycling of predictors used to estimate glomerular filtration rate: Insight into lateral collinearity

Luis Gustavo Modelli de Andrade and Helio Tedesco-Silva

PLOS ONE, 2020, vol. 15, issue 2, 1-8

Abstract: Background: One overlooked problem in statistical analysis is lateral collinearity, a phenomenon that may occur when the outcome variable derives from the predictors. In nephrology this issue is seen with the use of estimated glomerular filtration rate (eGFR) as an outcome and age, sex, and ethnicity as predictors. In this study with simulated data, we aim to illustrate this problem. Methods: We randomly generated unrelated data to estimate eGFR by common equations. Results: Using simulated data, we show that age, gender, and ethnicity (recycled predictors variables) are statistically significantly correlated with eGFR in linear regression analysis. Whereas the initial obvious conclusion is that age, sex, and ethnicity are strong predictors of eGFR, more rigorous interpretation suggests that this is a byproduct of the mathematical model produced when deriving new predictors from another. Conclusion: While statistical models have the ability to identify vertical collinearity (predictor-predictor), lateral collinearity (predictor-outcome) is seldom identified and discussed in statistical analysis. Therefore, caution is needed when interpreting the correlation between age, gender, and ethnicity with eGFR derived from regression analyses.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228842 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28842&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0228842

DOI: 10.1371/journal.pone.0228842

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0228842