PACC: Large scale connected component computation on Hadoop and Spark
Ha-Myung Park,
Namyong Park,
Sung-Hyon Myaeng and
U Kang
PLOS ONE, 2020, vol. 15, issue 3, 1-25
Abstract:
A connected component in a graph is a set of nodes linked to each other by paths. The problem of finding connected components has been applied to diverse graph analysis tasks such as graph partitioning, graph compression, and pattern recognition. Several distributed algorithms have been proposed to find connected components in enormous graphs. Ironically, the distributed algorithms do not scale enough due to unnecessary data IO & processing, massive intermediate data, numerous rounds of computations, and load balancing issues. In this paper, we propose a fast and scalable distributed algorithm PACC (Partition-Aware Connected Components) for connected component computation based on three key techniques: two-step processing of partitioning & computation, edge filtering, and sketching. PACC considerably shrinks the size of intermediate data, the size of input graph, and the number of rounds without suffering from load balancing issues. PACC performs 2.9 to 10.7 times faster on real-world graphs compared to the state-of-the-art MapReduce and Spark algorithms.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229936 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29936&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0229936
DOI: 10.1371/journal.pone.0229936
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().