Practical adoption of state-of-the-art hiPSC-cardiomyocyte differentiation techniques
Cassady E Rupert,
Chinedu Irofuala and
Kareen L K Coulombe
PLOS ONE, 2020, vol. 15, issue 3, 1-13
Abstract:
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are a valuable resource for cardiac therapeutic development; however, generation of these cells in large numbers and high purity is a limitation in widespread adoption. Here, design of experiments (DOE) is used to investigate the cardiac differentiation space of three hiPSC lines when varying CHIR99027 concentration and cell seeding density, and a novel image analysis is developed to evaluate plate coverage when initiating differentiation. Metabolic selection via lactate purifies hiPSC-cardiomyocyte populations, and the bioenergetic phenotype and engineered tissue mechanics of purified and unpurified hiPSC-cardiomyocytes are compared. Findings demonstrate that when initiating differentiation one day after hiPSC plating, low (3 μM) Chiron and 72 x 103 cells/cm2 seeding density result in peak cardiac purity (50–90%) for all three hiPSC lines. Our results confirm that metabolic selection with lactate shifts hiPSC-cardiomyocyte metabolism towards oxidative phosphorylation, but this more “mature” metabolic phenotype does not by itself result in a more mature contractile phenotype in engineered cardiac tissues at one week of culture in 3D tissues. This study provides widely adaptable methods including novel image analysis code and parameters for refining hiPSC-cardiomyocyte differentiation and describes the practical implications of metabolic selection of cardiomyocytes for downstream tissue engineering applications.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230001 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30001&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0230001
DOI: 10.1371/journal.pone.0230001
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().