EconPapers    
Economics at your fingertips  
 

Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE

Siyang Yin, Wenjin Wu, Xuejing Zhao, Chen Gong, Xinwu Li and Lu Zhang

PLOS ONE, 2020, vol. 15, issue 3, 1-16

Abstract: Spatiotemporal patterns of global forest net primary productivity (NPP) are pivotal for us to understand the interaction between the climate and the terrestrial carbon cycle. In this study, we use Google Earth Engine (GEE), which is a powerful cloud platform, to study the dynamics of the global forest NPP with remote sensing and climate datasets. In contrast with traditional analyses that divide forest areas according to geographical location or climate types to retrieve general conclusions, we categorize forest regions based on their NPP levels. Nine categories of forests are obtained with the self-organizing map (SOM) method, and eight relative factors are considered in the analysis. We found that although forests can achieve higher NPP with taller, denser and more broad-leaved trees, the influence of the climate is stronger on the NPP; for the high-NPP categories, precipitation shows a weak or negative correlation with vegetation greenness, while lacking water may correspond to decrease in productivity for low-NPP categories. The low-NPP categories responded mainly to the La Niña event with an increase in the NPP, while the NPP of the high-NPP categories increased at the onset of the El Niño event and decreased soon afterwards when the warm phase of the El Niño-Southern Oscillation (ENSO) wore off. The influence of the ENSO changes correspondingly with different NPP levels, which infers that the pattern of climate oscillation and forest growth conditions have some degree of synchronization. These findings may facilitate the understanding of global forest NPP variation from a different perspective.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230098 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30098&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0230098

DOI: 10.1371/journal.pone.0230098

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0230098