Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study
Soling Zimik,
Rahul Pandit and
Rupamanjari Majumder
PLOS ONE, 2020, vol. 15, issue 3, 1-14
Abstract:
Several pathological conditions introduce spatial variations in the electrical properties of cardiac tissue. These variations occur as localized or distributed gradients in ion-channel functionality over extended tissue media. Electrical waves, propagating through such affected tissue, demonstrate distortions, depending on the nature of the ionic gradient in the diseased substrate. If the degree of distortion is large, reentrant activity may develop, in the form of rotating spiral (2d) and scroll (3d) waves of electrical activity. These reentrant waves are associated with the occurrence of lethal cardiac rhythm disorders, known as arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), which are believed to be common precursors of sudden cardiac arrest. By using state-of-the-art mathematical models for generic, and ionically-realistic (human) cardiac tissue, we study the detrimental effects of these ionic gradients on electrical wave propagation. We propose a possible mechanism for the development of instabilities in reentrant wave patterns, in the presence of ionic gradients in cardiac tissue, which may explain how one type of arrhythmia (VT) can degenerate into another (VF). Our proposed mechanism entails anisotropic reduction in the wavelength of the excitation waves because of anisotropic variation in its electrical properties, in particular the action potential duration (APD). We find that the variation in the APD, which we induce by varying ion-channel conductances, imposes a spatial variation in the spiral- or scroll-wave frequency ω. Such gradients in ω induce anisotropic shortening of wavelength of the spiral or scroll arms and eventually leads to instabilitites.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230214 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30214&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0230214
DOI: 10.1371/journal.pone.0230214
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().