EconPapers    
Economics at your fingertips  
 

Identification of different species of Zanthoxyli Pericarpium based on convolution neural network

Chaoqun Tan, Chong Wu, Yongliang Huang, Chunjie Wu and Hu Chen

PLOS ONE, 2020, vol. 15, issue 4, 1-15

Abstract: Zanthoxyli Pericarpium (ZP) are the dried ripe peel of Zanthoxylum schinifolium Sieb. et Zucc (ZC) or Zanthoxylum bungeanum Maxim (ZB). It has wide range of uses both medicine and food, and favorable market value. The diverse specifications of components of ZP is exceptional, and the common aims of adulteration for economic profit is conducted. In this work, a novel method for the identification different species of ZP is proposed using convolutional neural networks (CNNs). The data used for the experiment is 5 classes obtained from camera and mobile phones. Firstly, the data considering 2 categories are trained to detect the labels by YOLO. Then, the multiple deep learning including VGG, ResNet, Inception v4, and DenseNet are introduced to identify the different species of ZP (HZB, DZB, OZB, ZA and JZC). In order to assess the performance of CNNs, compared with two traditional identification models including Support Vector Machines (SVM) and Back Propagation (BP). The experimental results demonstrate that the CNN model have a better performance to identify different species of ZP and the highest identification accuracy is 99.35%. The present study is proved to be a useful strategy for the discrimination of different traditional Chinese medicines (TCMs).

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230287 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30287&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0230287

DOI: 10.1371/journal.pone.0230287

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0230287