EconPapers    
Economics at your fingertips  
 

Cardiac MR segmentation based on sequence propagation by deep learning

Chao Luo, Canghong Shi, Xiaoji Li and Dongrui Gao

PLOS ONE, 2020, vol. 15, issue 4, 1-13

Abstract: Accurate segmentation of myocardial in cardiac MRI (magnetic resonance image) is key to effective rapid diagnosis and quantitative pathology analysis. However, a low-quality CMR (cardiac magnetic resonance) image with a large amount of noise makes it extremely difficult to accurately and quickly manually segment the myocardial. In this paper, we propose a method for CMR segmentation based on U-Net and combined with image sequence information. The method can effectively segment from the top slice to the bottom slice of the CMR. During training, each input slice depends on the slice below it. In other words, the predicted segmentation result depends on the existing segmentation label of the previous slice. 3D sequence information is fully utilized. Our method was validated on the ACDC dataset, which included CMR images of 100 patients (1700 2D MRI). Experimental results show that our method can segment the myocardial quickly and efficiently and is better than the current state-of-the-art methods. When evaluating 340 CMR image, our model yielded an average dice score of 85.02 ± 0.15, which is much higher than the existing classical segmentation method(Unet, Dice score = 0.78 ± 0.3).

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230415 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30415&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0230415

DOI: 10.1371/journal.pone.0230415

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0230415