EconPapers    
Economics at your fingertips  
 

Demarcating geographic regions using community detection in commuting networks with significant self-loops

Mark He, Joseph Glasser, Nathaniel Pritchard, Shankar Bhamidi and Nikhil Kaza

PLOS ONE, 2020, vol. 15, issue 4, 1-31

Abstract: We develop a method to identify statistically significant communities in a weighted network with a high proportion of self-looping weights. We use this method to find overlapping agglomerations of U.S. counties by representing inter-county commuting as a weighted network. We identify three types of communities; non-nodal, nodal and monads, which correspond to different types of regions. The results suggest that traditional regional delineations that rely on ad hoc thresholds do not account for important and pervasive connections that extend far beyond expected metropolitan boundaries or megaregions.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230941 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30941&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0230941

DOI: 10.1371/journal.pone.0230941

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0230941