Size agnostic change point detection framework for evolving networks
Hadar Miller and
Osnat Mokryn
PLOS ONE, 2020, vol. 15, issue 4, 1-23
Abstract:
Changes in the structure of observed social and complex networks can indicate a significant underlying change in an organization, or reflect the response of the network to an external event. Automatic detection of change points in evolving networks is rudimentary to the research and the understanding of the effect of such events on networks. Here we present an easy-to-implement and fast framework for change point detection in evolving temporal networks. Our method is size agnostic, and does not require either prior knowledge about the network’s size and structure, nor does it require obtaining historical information or nodal identities over time. We tested it over both synthetic data derived from dynamic models and two real datasets: Enron email exchange and AskUbuntu forum. Our framework succeeds with both precision and recall and outperforms previous solutions.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231035 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31035&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231035
DOI: 10.1371/journal.pone.0231035
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().