EconPapers    
Economics at your fingertips  
 

A compound attributes-based predictive model for drug induced liver injury in humans

Yang Liu, Hua Gao and Yudong D He

PLOS ONE, 2020, vol. 15, issue 4, 1-14

Abstract: Drug induced liver injury (DILI) is one of the key safety concerns in drug development. To assess the likelihood of drug candidates with potential adverse reactions of liver, we propose a compound attributes-based approach to predicting hepatobiliary disorders that are routinely reported to US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Specifically, we developed a support vector machine (SVM) model with recursive feature extraction, based on physicochemical and structural properties of compounds as model input. Cross validation demonstrates that the predictive model has a robust performance with averaged 70% of both sensitivity and specificity over 500 trials. An independent validation was performed on public benchmark drugs and the results suggest potential utility of our model for identifying safety alerts. This in silico approach, upon further validation, would ultimately be implemented, together with other in vitro safety assays, for screening compounds early in drug development.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231252 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31252&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231252

DOI: 10.1371/journal.pone.0231252

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0231252