EconPapers    
Economics at your fingertips  
 

Exact flow of particles using for state estimations in unmanned aerial systems` navigation

Erol Duymaz, A Ersan Oğuz and Hakan Temeltaş

PLOS ONE, 2020, vol. 15, issue 4, 1-27

Abstract: The navigation is a substantial issue in the field of robotics. Simultaneous Localization and Mapping (SLAM) is a principle for many autonomous navigation applications, particularly in the Global Navigation Satellite System (GNSS) denied environments. Many SLAM methods made substantial contributions to improve its accuracy, cost, and efficiency. Still, it is a considerable challenge to manage robust SLAM, and there exist several attempts to find better estimation algorithms for it. In this research, we proposed a novel Bayesian filtering based Airborne SLAM structure for the first time in the literature. We also presented the mathematical background of the algorithm, and the SLAM model of an autonomous aerial vehicle. Simulation results emphasize that the new Airborne SLAM performance with the exact flow of particles using for recursive state estimations superior to other approaches emerged before, in terms of accuracy and speed of convergence. Nevertheless, its computational complexity may cause real-time application concerns, particularly in high-dimensional state spaces. However, in Airborne SLAM, it can be preferred in the measurement environments that use low uncertainty sensors because it gives more successful results by eliminating the problem of degeneration seen in the particle filter structure.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231412 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31412&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231412

DOI: 10.1371/journal.pone.0231412

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0231412