Exploiting implicit social relationships via dimension reduction to improve recommendation system performance
Ali M Ahmed Al-Sabaawi,
Hacer Karacan and
Yusuf Erkan Yenice
PLOS ONE, 2020, vol. 15, issue 4, 1-18
Abstract:
The development of Web 2.0 and the rapid growth of available data have led to the development of systems, such as recommendation systems (RSs), that can handle the information overload. However, RS performance is severely limited by sparsity and cold-start problems. Thus, this paper aims to alleviate these problems. To realize this objective, a new model is proposed by integrating three sources of information: a user-item matrix, explicit and implicit relationships. The core strategy of this study is to use the multi-step resource allocation (MSRA) method to identify hidden relations in social information. First, explicit social information is used to compute the similarity between each pair of users. Second, for each non-friend pair of users, the MSRA method is applied to determine the probability of their relation. If the probability exceeds a threshold, a new relationship will be established. Then, all sources are incorporated into the Singular Value Decomposition (SVD) method to compute the missing prediction values. Furthermore, the stochastic gradient descent technique is applied to optimize the training process. Additionally, two real datasets, namely, Last.Fm and Ciao, are utilized to evaluate the proposed method. In terms of accuracy, the experiment results demonstrate that the proposed method outperforms eight state-of-the-art approaches: Heats, PMF, SVD, SR, EISR-JC, EISR-CN, EISR-PA and EISR-RAI.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231457 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31457&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231457
DOI: 10.1371/journal.pone.0231457
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().