Class enumeration false positive in skew-t family of continuous growth mixture models
Kiero Guerra-Peña,
Zoilo Emilio García-Batista,
Sarah Depaoli and
Luis Eduardo Garrido
PLOS ONE, 2020, vol. 15, issue 4, 1-19
Abstract:
Growth Mixture Modeling (GMM) has gained great popularity in the last decades as a methodology for longitudinal data analysis. The usual assumption of normally distributed repeated measures has been shown as problematic in real-life data applications. Namely, performing normal GMM on data that is even slightly skewed can lead to an over selection of the number of latent classes. In order to ameliorate this unwanted result, GMM based on the skew t family of continuous distributions has been proposed. This family of distributions includes the normal, skew normal, t, and skew t. This simulation study aims to determine the efficiency of selecting the “true” number of latent groups in GMM based on the skew t family of continuous distributions, using fit indices and likelihood ratio tests. Results show that the skew t GMM was the only model considered that showed fit indices and LRT false positive rates under the 0.05 cutoff value across sample sizes and for normal, and skewed and kurtic data. Simulation results are corroborated by a real educational data application example. These findings favor the development of practical guides of the benefits and risks of using the GMM based on this family of distributions.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231525 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31525&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231525
DOI: 10.1371/journal.pone.0231525
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().